Observed thinning of Totten Glacier is linked to coastal polynya variability.

نویسندگان

  • A Khazendar
  • M P Schodlok
  • I Fenty
  • S R M Ligtenberg
  • E Rignot
  • M R van den Broeke
چکیده

Analysis of ICESat-1 data (2003-2008) shows significant surface lowering of Totten Glacier, the glacier discharging the largest volume of ice in East Antarctica, and less change on nearby Moscow University Glacier. After accounting for firn compaction anomalies, the thinning appears to coincide with fast-flowing ice indicating a dynamical origin. Here, to elucidate these observations, we apply high-resolution ice-ocean modelling. Totten Ice Shelf is simulated to have higher, more variable basal melting rates. We link this variability to the volume of cold water, originating in polynyas upon sea ice formation, reaching the sub-ice-shelf cavity. Hence, we propose that the observed increased thinning of Totten Glacier is due to enhanced basal melting caused by a decrease in cold polynya water reaching its cavity. We support this hypothesis with passive microwave data of polynya extent variability. Considering the widespread changes in sea ice conditions, this mechanism could be contributing extensively to ice-shelf instability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dense shelf water production in the Adelie Depression, East Antarctica, 2004-2012: Impact of the Mertz Glacier calving

Summer repeated hydrographic surveys and 4 years of mooring observations are used to characterize for the first time the interannual variability of the bottom water in the Mertz Glacier Polynya (MGP) on the East Antarctic shelf (142 E–146 E). Until 2010, large interannual variability was observed in the summer bottom salinity with year-to-year changes reaching 0.12 in Commonwealth Bay, the regi...

متن کامل

Dynamic thinning of Antarctic glaciers from along-track repeat radar altimetry

Since 2002, the Envisat radar altimeter has measured the elevation of the Antarctic ice sheet with a repeat cycle of 35 days. This long and regular time series is processed using an along-track algorithm to depict in detail the spatial and temporal pattern of elevation change for the whole ice sheet. We use this dataset to examine the spatial and temporal pattern of Pine Island Glacier (PIG) th...

متن کامل

Wind causes Totten Ice Shelf melt and acceleration

Totten Glacier in East Antarctica has the potential to raise global sea level by at least 3.5 m, but its sensitivity to climate change has not been well understood. The glacier is coupled to the ocean by the Totten Ice Shelf, which has exhibited variable speed, thickness, and grounding line position in recent years. To understand the drivers of this interannual variability, we compare ice veloc...

متن کامل

Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models

Massive glacier thinning in the Alps during the past 20 years is documented by direct mass balance measurements on nine regularly observed glaciers. How representative this limited sample of glaciers is for the entire Alps, however, remained uncertain. The near-global digital terrain model from the SRTM enables a closer analysis of this question, which is of fundamental importance to assess ove...

متن کامل

Ice sheet record of recent sea-ice behavior and polynya variability in the Amundsen Sea, West Antarctica

[1] Our understanding of past sea-ice variability is limited by the short length of satellite and instrumental records. Proxy records can extend these observations but require further development and validation. We compare methanesulfonic acid (MSA) and chloride (Cl) concentrations from a new firn core from coastal West Antarctica with satellite-derived observations of regional sea-ice concentr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013